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INTRODUCTION 

The s tudy   of   a i r f rame  and   engine- in le t   in tegra t ion   has   recent ly  become even  more 
i m p o r t a n t   i n   t h e   l i g h t  of c u r r e n t   f i g h t e r  and supe rc ru i se r   a i r c ra f t   des ign .   These  
conf igu ra t ions  are cha rac t e r i zed  by fuse lages   and   canopies   wi th   d i s t inc t ly  nonaxisym- 
metric cross-sect ional   geometr ies   and  thin,  low-aspect-ratio, highly  tapered swept 
wings. I n l e t   e x t e r n a l   s u r f a c e s  are o f t e n  w e l l  i n t eg ra t ed   w i th   t he   fu se l age   ( r e f .  1 1 ,  
and .the i n l e t s  may be located  almost  anywhere on the fuse l age  (ref.  2 ) .  Such air- 
c r a f t   c o n f i g u r a t i o n s  may a l s o   i n c l u d e ,   i n  more complicated cases, forward-mounted 
canards,  wing s t rakes ,   leading-edge  extensions (LEX'S) ,  f i n s ,  and s t o r e s  hung i n  a 
mul t i tude  of  combinations. 

In le t   per formance  is determined  to  a g r e a t   e x t e n t  by the f low  f i e ld   j u s t   ahead  
of t he   i n l e t   en t r ance   p l ane .   Sa t i s f ac to ry   i n l e t   pe r fo rmance   u sua l ly   r equ i r e s   t ha t  
flows a t  the i n l e t   f a c e  be h igh   i n   t o t a l -p re s su re   r ecove ry  and tha t   t h i s   r ecove ry  and 
the   l oca l   f l ow  inc l ina t ion  be r e l a t i v e l y   i n s e n s i t i v e   t o   a i r c r a f t   f l i g h t   c o n d i t i o n s .  

The e f f e c t s  of these conf igu ra t ion  parameters on t h e   f l o w   i n t o   t h e   i n l e t  are 
many.  The i n l e t  is s u b j e c t   t o  a number of d i s turbances  from the   a i r c ra f t   fo rebody  
alone,   including  large  f low  var ia t ions,   substant ia l   boundary-layer   growth,   vor tex 
shedding,  and  shock  impingement.  If  the  inlet is sh ie lded  by the  wing  of t h e   a i r -  
c r a f t ,   f u r the r   compl i ca t ions  may arise through  the  complex  interaction  between  the 
wing  and  forebody,  the  effects  of  which are highly  three-dimensional.   In  such cases 
it is u s u a l l y   p o s s i b l e   t o   a d j u s t   t h e   i n l e t   l o c a t i o n  and the  wing pos i t i on   t o   op t imize  
in l e t   pe r fo rmance ,   bu t   no t   w i thou t   s ac r i f i ce s .  For example, bu ry ing   t he   i n l e t  w e l l  
behind  the  leading  edge  of the wing  near  the  fuselage w i l l  a lmos t   ce r t a in ly  improve 
the   in le t   per formance  a t  high  angles  of a t t a c k ,   b u t   u s u a l l y  a t  the  expense  of  per- 
formance a t  s u b s t a n t i a l   a n g l e s  of s i d e s l i p   ( r e f .  3 ) .  

O t h e r   c o n t r i b u t o r s   t o   a i r c r a f t   i n l e t   f l o w   p r o b l e m s  are the  various  protuberances 
t h a t   a r e   p l a c e d  on t h e   a i r c r a f t   f u s e l a g e   o r  wings.  Canopies, LEX'S, and canards ,   in  
t h e i r   t r a d i t i o n a l   p o s i t i o n s ,   c a u s e   t h e  most ser ious  problems  for   engine  inlets  a t  
high  angles of a t t a c k   o r   s i d e s l i p   o r   b o t h   ( r e f .  4 ) .  Low- o r  side-mounted i n l e t s  are 
more l i k e l y   t o  be d i s tu rbed  by s t o r e s  hung  from the   fuse lage   o r  wing o r  by v e n t r a l  
f i n s ,   a l t hough  the la t ter  are usua l ly   p l aced   f a r  enough a f t   t o  he no problem. 

The purpose  of   this   s tudy w a s  t o  assess t h e   c a p a b i l i t y  of two numerical  flow 
p r e d i c t i o n  methods to   p red ic t   fo rebody   f low  f i e lds   nea r   t he   eng ine   i n l e t  on realist ic 
f igh te r s .   Fo r   t h i s   s tudy   on ly   i nv i sc id   p red ic t ion  methods were considered. The 
t a r g e t  of t h i s   s t u d y  w a s  to  determine the shortcomings of these  methods,  which  could 
no t  be expec ted   t o   p red ic t   v i scous   e f f ec t s .  The f ighter   speed  range from Mach 0.9 
to  2.5 and  angles  of  at tack from Oo t o  25O were of i n t e r e s t ,  and of prime importance 
w a s  t he  realist ic modelling  of  the a i rcraf t  geometry. The ease of  use  of  the com- 
puter  programs that implemented  each method  and their  economy of opera t ion  w a s  a l s o  
considered. 

Predic t ions   o f   a i rc raf t   forebody  f lows  are valuable  not  only t o  the des igner   bu t  
also t o  the wind tunne l  test  engineer   ( re f .  5 ) .  The r e s u l t s  are presented   in  a form 
p a r t i c u l a r l y   u s e f u l  to  both,  namely,  flow-field  contours, a t  the h y p o t h e t i c a l   i n l e t  
entrance  plane,   of  local angle   o f   a t tack ,   angle  of s i d e s l i p ,  and Mach number. 



Two o the r   sub jec t s ,  which w i l l  no t  be i n c l u d e d   i n   t h i s   i n v e s t i g a t i o n ,  must be 
mentioned i n   t h e   i n t e r e s t  of comple teness :   cyc l ic   f low  d is tor t ion   and   sp i l lage .  The 
f i r s t  phenomenon may have a s t rong   adve r se   e f f ec t  on i n l e t  pressure  recovery,   par t ic-  
u la r ly   dur ing   maneuver ing   f l igh t   ( re f .  61, and is extremely  configuration  dependent.  
In l e t   sp i l l age ,   because  of its deformation of t h e   a i r c r a f t   f l o w   f i e l d ,   c a n   s e r i o u s l y  
a f fec t   the   aerodynamic   e f f ic iency   of   the   a i rc raf t .   Recent   theore t ica l   p red ic t ions   o f  
t h i s  phenomenon have  agreed w e l l  with wind tunne l   da t a   ( r e f .  7 ) .  
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SYMBOLS 

s p e c i f i c   h e a t  a t  cons tan t   p ressure  

s p e c i f i c   h e a t   a t   c o n s t a n t  volume 

Mach number 

In P 

pressure  (normalized  with  respect  to  

entropy  (normalized  with  respect to  c ) 

temperature   (normalized  with  respect   to  

veloci t ies   corresponding to the  x,  y,  and z direct ions  (normalized 

- 
VIoD 

wi th   respec t   to  (FJF-)  

C a r t e s i a n  coordinates  i n  t h e   a x i a l ,   t r a n s v e r s e ,  and  normal d i r e c t i o n s  
(normalized  with  respect   to  an a r b i t r a r y   l e n g t h )  

angle  of a t tack ,   t an”  (w/u) 

angle of s ides l ip ,   t an”   (v /u )  

r a t i o  of s p e c i f i c   h e a t s ,  

dens i ty   (normal ized   wi th   respec t   to  pool 

per tu rba t ion   po ten t i a l   func t ion  

” 

cp/cv - 

Subscripts :  

1 loca l   condi t ions  

OD free-s  tream  conditions 

X I Y I Z  p a r t i a l   d e r i v a t i v e s   w i t h   r e s p e c t   t o   t h e   a p p r o p r i a t e   d i r e c t i o n   o r   d i r e c t i o n s  

A bar  over a symbol i n d i c a t e s  a dimensional  value. 

NUMERICAL PREDICTION METHODS 

Because of t he   d i f f e rences   i n   t he   s imp l i f i ed   equa t ions  of motion  for  supersonic 
and  transonic  f lows, almost a l l  the  numerical   methods  investigated were s p e c i f i c a l l y  
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f o r  one speed  regime  or the other.   During  the  course of t h i s   s t u d y ,   c e r t a i n   c r i t e r i a  
were used t o   a s s e s s   t h e   a p p l i c a b i l i t y  of each of the  computer  programs.  Solution 
accuracy ,   in tegr i ty  of the  geometric  model,   operational ease, and running  expense 
were the  most  important criteria. In   t he   f i na l   ana lys i s ,   f o r   supe r son ic   ca ses ,  a 
three-dimensional Euler equation  marching  code, STEIN,  was chosen  over a sur face  
paneling  code,  the PAN A I R  P i lo t  Code.  Although  the latter program w a s  appl icable  
to  a wide range  of  geometric  configurations and  had  reached a h igh   leve l  of t echn ica l  
development  (ref. 8 ) ,  r e c e n t   s t u d i e s   ( r e f .  9 )  have shown t h a t  it is less accura te  
r e l a t i v e  to the  STEIN code  and is s u b s t a n t i a l l y  more expensive to operate .  

A similar s i tua t ion   deve loped   i n   t he   s ea rch   fo r  a transonic  code.  Ultimately, a 
small-disturbance  code, WIBCO, w a s  chosen  over a fu l l -po ten t i a l   code ,  E'LO-30, which 
is the latest  member of a family of no -codes   ( r e f s .  10 to  121, each of which is 
capable of handling a more complex  wing-body conf igura t ion .   Inves t iga t ion  of the 
most recent  FLO-30 c a l c u l a t i o n s   ( r e f .  131, however,   indicated  that   the method  by 
i t s e l f  was capable   of   solut ions  for   fuselages of only  moderate  complexity,  particu- 
l a r ly  i f   t h e  wing w a s  of low aspec t   r a t io .   S ince  many of t he   f i gh te r   c ros s   s ec t ions  
var ied  considerably from a n  axisymmetric  shape, it was dec ided   tha t  WIBCO would be 
t h e   b e t t e r   c h o i c e ,   i n   s p i t e  of  the  small-disturbance  approximations  applied  in  the 
ca l cu la t ions .  

Although  neither WIBCO nor STEIN had been deve loped   fo r   app l i ca t ion   t o   f i gh te r  
a i r c r a f t   c o n f i g u r a t i o n s ,  it was ant ic ipated  that   modif icat ions  to   the  codes  as   might  
be  necessary  could be e f f i c i en t ly   ca r r i ed   ou t   because  of their   usage i n  many areas  
and t h e   a v a i l a b i l i t y  of complete  documentation. 

One o t h e r   f a c t o r  weighed  heavily  in  the  choice of the  STEIN and WIBCO codes: 
t h e   s i m i l a r i t y  of t h e   a i r c r a f t  model  geometry  input. Both codes   have   s l igh t ly   d i f -  
f e r en t   ve r s ions  of the  QUICK-geometry methodology  developed by Vachris and  Yaeger 
( r e f .  1 4 ) .  I n   t h i s  method t h e   a i r c r a f t   c r o s s   s e c t i o n s   a r e   d e s c r i b e d   a t   a p p r o p r i a t e  
s t a t i o n s  by spec i fy ing   con t ro l   po in t s   a t   e ach   c ros s   s ec t ion  and the  type of curves   to  
be used to   connec t   t he   po in t s .   Af t e r   t he   de t a i l s  of each  cross-sectional  geometric 
model a r e   s p e c i f i e d ,   t h e   a i r c r a f t  body l i n e s   a r e   d e s c r i b e d   i n  a  manner s imi l a r   t o   t he  
c ros s   s ec t ions ,   p i ece  by p iece ,   wi th   l ines ,   e l l ipses ,   parabolas ,  and so fo r th .  The 
r e s u l t  is  an a n a l y t i c a l  body  model t ha t   a l l ows  a quick   ca lcu la t ion  of sur face   po in ts  
and s lopes   over   the   en t i re   l ength  of the body. This method requires   the body coordi-  
na t e s   t o  be single-valued polar coordinates .  The wing, i f   p r e s e n t ,  is considered  as 
an  outgrowth of the  body f o r   t h e  STEIN input,  whereas  the wing is a sepa ra t e   spec i f i -  
ca t ion  of c h o r d   s e c t i o n s   a t   d i f f e r e n t   s p a n   l o c a t i o n s   f o r   t h e  WIBCO input .  

The task  of desc r ib ing   t he   a i r c ra f t   geomet ry  by t h i s  method  can become time 
consuming. It w a s  ea sed   subs t an t i a l ly   fo r   t he   p re sen t   s tudy   t h rough   t he   ava i l ab i l i t y  
of an  interactive  graphics  system  developed by Adams ( r e f .  1 5 ) .  Examples of the  use 
of t h i s  system i n  de f in ing  a typ ica l   fuse lage   c ross   sec t ion  and a  body l i n e   a r e  shown 
i n   f i g u r e  1 ( a ) .  The resu l t ing   geometr ic  model, p l o t t e d  as a series of cross   sec-  
t i o n s ,  is shown i n   f i g u r e  1 ( b )  . 

Supersonic Code - STEIN 

According to  re ference  16, STEIN w a s  o r ig ina l ly   formula ted   to   p rovide   inv isc id  
so lu t ions   for   f lows   in   supersonic  or hypersonic   condi t ions   for  a wide v a r i e t y  of 
vehicle   configurat ions  throughout  a large  angle-of-attack  range. A l l  forms of small- 
per turba t ion   techniques ,   va l id   on ly  a t  low Mach numbers  and l o w  angles  of a t t a c k ,  and 
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Newtonian theory,   val id   only a t  high Mach numbers, were rejected  as   being  inadequate  
for  the  problems a t  hand.  Thus, STEIN was developed as a f in i te -d i f fe rence   marching  
so lu t ion  of the  three-dimensional Euler equat ions  with  shock-f i t t ing  techniques 
appl ied  to   selected  types  of   shocks.   Marching  solut ions  carry  an  implici t   require-  
ment t ha t   t he   f l ow  th roughou t   t he   f i e ld   o f   i n t e re s t  be supersonic.  A s  w i l l  be seen, 
this   requirement   affects   the  range  of  Mach numbers  and the type  of   configurat ions  for  
which the STEIN code is appl icable .  

The geometric model t h a t  is inpu t  to the  code is i n   t h e  QUICK-geometry format. 
Wings, canards,  and other   protuberances are defined  simply as outgrowths  from  the 
fuselage  shape a t  each  cross   sect ion.  The inpu t   t ha t   t he  code r equ i r e s  as well as a 
summary  of the  QUICK-geometry system are p resen ted   i n   r e f e rence  1 7. 

The solution  "marches"  along  an  axis of the vehic le  from a s t a r t i n g   s o l u t i o n  
near  the  nose  toward  the t a i l  of t h e   a i r c r a f t .  Two opt ions  are allowed  for  the 
s t a r t i n g   s o l u t i o n ,  one f o r  a b lun t  nose  and  one f o r  a pointed  nose. The f i g h t e r  
a i r c r a f t   i n   t h i s   s t u d y  were configured  with  pointed  noses ,  and thus  the  second  option 
was used. A conical  supersonic  f low is assumed  up t o  a c e r t a i n   f u s e l a g e   s t a t i o n ,   t h e  
" s t a r t i ng   p l ane , "  beyond  which the  marching  solution  takes  over.  Downstream  from the  
s t a r t i ng   p l ane ,   t he   r eg ion  of computation is bounded by the  body  and by the bow shock 
of  the  vehicle.   This area is f i r s t   t ransformed,   conformal ly ,   to  a mapped space i n  
which the  geometric cross sec t ions  become "near   c i rc les . "  The computational  space is 
formed  from the mapped space by normalizing  the  radial  and c i r cumfe ren t i a l   d i s t ances  
between  the body  and the bow shock,  with  the  portions of the  plane of  symmetry  above 
and  below t h e   a i r c r a f t  becoming the  upper  and  lower limits of the  computational mesh. 
The normal iza t ion   resu l t s  i n  a rectangular   computat ional   gr id  which t ransforms  in to  a 
g r i d  i n  the   phys ica l   space   tha t  is f inely  spaced i n  regions of highly  convex body 
curvature .  

Shocks t h a t  form within  the  computational  grid are considered  to  be of two 
types:  "cross-flow"  shocks, which are   predominant ly   radial ,  and  "winglo or  "canopy" 
shocks, which a r e   e s s e n t i a l l y   a t  a constant   radius  i n  t he  mapped plane.  Figure 2 
shows  a typical   shock  configurat ion  generated by a winged a i r c r a f t   i n  which the re  
a r e  bow, canopy,  and  wing  shocks. A l l  these  imbedded shocks  are  located by monitor- 
ing  local   pressure  throughout   the  f low and de termining   the   po in t  of maximum grad ien t  
based on a cubic   polynomial   curve  f i t .   Locat ions of inverse   p ressure   g rad ien ts  
a rb i t ra r i ly   near   zero   a re   des igna ted   as   shock   po in ts .  The t ransformation from the  
mapped to  the  computational  space is then  adjusted so tha t   t he   shocks  become  mesh 
l ines,   with  the  Rankine-Hugoniot  relation  being  applied  across  each  shock. As the  
code  progresses  downstream,  each  shock wave is fo l lowed   un t i l  i ts demise or u n t i l  it 
merges  with  another  shock. A t yp ica l   r ep resen ta t ion  of the  mesh as it -appears i n  
the  physical   p lane is shown i n   f i g u r e  3.  Note the  manner i n  which the  canopy  and 
wing s h o c k s   a r e   f i t t e d   i n t o   t h e  mesh between  the body  and bow shock,   ensuring  that  
the  shock  locat ions are single  valued  throughout a l l  the   p lanes .  

In  regions of continuous  f low,  the  Euler  equations  in  the  physical   plane i n  a 
marching  form a r e  

up + YUX = -(vP + w P + yv + ywz) 
X Y Z  Y 

uv = - ( w  + w v  + T P )  
X Y z Y 
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uw = - ( v w  + ww 
X Y Z 

TP + uu = - (vu  
X X Y 

u s  = -(VSx + w s  
X Z 

+ TPz) 

+ wuz) 

with a corresponding  ideal-gas  equation of s t a t e  

In  T =- P + - s  Y - 1  1 
Y Y 

Upon t ransformation to the  computat ional   plane,   the   der ivat ives  of the  f ive  dependent  
va r i ab le s  P, u,  v, w, and S appearing on the  r ight-hand  s ides  of the  equat ions 
are e v a l u a t e d   e x p l i c i t l y ,  and the   so lu t ion  is stepped by using a MacCormack two-level 
pred ic tor -cor rec tor  scheme (ref.  16).  This  procedure is v a r i e d   a t  body  and shock 
poin ts .  U s e  of the MacCormack scheme  and str ict  c o n t r o l  of t h e   s t e p  s ize  ensures 
second-order  accuracy  in  the  marching  direction  for a l i n e a r  system of equations,  and 
t runca t ion   e r ro r  is assumed correspondingly  small   for  the  present  system. 

The vers ion of the  STEIN code  used  herein  includes  the  most  recent  modifications 
t o   t h e   c a p a b i l i t i e s  of STEIN ( r e f .  18): i n l e t  mass inges t ion ,   subsonic   ax ia l  Mach 
number,  improved  conformal  mappings,  and s i d e s l i p .  Only the  second and t h i r d  modif- 
i c a t i o n s  were  used i n  this study. 

Transonic Code - WIBCO 

The WIBCO transonic  code w a s  developed by  Boppe ( r e f .  1 9 )  p r imar i ly   to   apply   the  
so lu t ion  of the smal l -d is turbance   po ten t ia l   equa t ion  to a r b i t r a r y  wing  and  body geom- 
etr ies .   Recognizing  the  increasing  complexi ty  of t r ad i t i ona l   g r id   t r ans fo rma t ions   a s  
conf igura t ions  become  more three-dimensional, Boppe avoids  these  problems by imbed- 
d ing   f i ne   Ca r t e s i an   g r ids   i n to  an overa l l   coarse   g r id   in   reg ions  where more flow 
d e t a i l  is  required.  The concept is shown schemat ica l ly   in   f igure  4 fo r  wing  and  body 
f ine   g r id s  imbedded i n  the  global   crude  gr id .  The c rude   gr id   in   the   phys ica l   space  
i s  s t r e t c h e d   i n   a l l   d i r e c t i o n s   t o   i n f i n i t y   ( e x c e p t   a t   t h e   p l a n e  of symmetry)  accord- 
i ng   t o   t he  method of re ference  20. S t r e t ch ing  i n  the   z -d i rec t ion  is also  propor-  
t iona l   to   the   t angent   func t ion ,   whereas   in  the y-direct ion  the  funct ion of choice is 
the  hyperbol ic   tangent .  

The wing  and  body f ine-gr id  systems are cons t ruc t ed   t o   t o t a l ly   encapsu la t e  their 
por t ions  of the  geometry  and  to  provide  computations  over a much smaller a rea  of t he  
flow.  These two fine-grid  systems  overlap and t ransfer   information  to   each  other ,  as 
w e l l  as to   the  crude-grid system, during  the  course of t h e   i t e r a t i o n s .  It  should  be 
noted  that   a l though the body fine-grid  system is a regular   Car tes ian   g r id ,  the wing 
fine-grid  system is  swept  and  tapered  according  to  the  planform  shape. 

The geometry system used  for  WIBCO is the same as that used  for  the STEIN super- 
sonic  code,  with two d i f f e r e n c e s :   f i r s t ,  WIBCO uses QUICK-geometry only   for   the  body 
and  with  several   opt ions removed;  and second, the wing is def ined   separa te ly  as wing 
sec t ions  a t  d i f f e r e n t   s p a n   s t a t i o n s .  Once these  t w o  l i m i t a t i o n s  are considered, 
however, a ca re fu l   des ign  of the STEIN geometry  can be t ransferred  with  only minor 
changes  to be  used as WIBCO input .  
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The small-dis turbance  equat ion  used  in  WIBCO, i nc lud ing  three terms t h a t  are 
u s u a l l y   p r e s e n t   o n l y   i n   t h e   f u l l - p o t e n t i a l   r e p r e s e n t a t i o n ,  is 

The $y$xy and $x$yy terms are inc luded   to   fac i l i t a te   the   reso lu t ion   of   shock  
waves on wings  of large sweep angles ,  and the $x2$xx term is included  to   provide a 
b e t t e r   i n d i c a t i o n   o f  when the equation  changes  type  from e l l ip t ic  to   hype rbo l i c  and 
vice  versa .  

The f in i te -d i f fe rence   approximat ions  are s t r a igh t fo rward .   Cen t r a l   d i f f e renc ing  
i s  used  throughout  except  in areas of l oca l   supe r son ic   f l ow,   i n  which  upwind d i f f e r -  
encing is used  for most of the second  der ivat ive terms. In  keeping  with the near- 
i s e n t r o p i c   n a t u r e  of the  f low,   nonconservat ive  difference  operators  are used, 
although it is acknowledged t h a t   r e s u l t s  w i l l  become less accura te   wi th   increas ing  
shock  strength.  For a wing-body conf igu ra t ion ,   t he   so lu t ion   beg ins   w i th   an   a rb i t r a ry  
number ( t y p i c a l l y  100)  of successive  l ine-overrelaxat ion  sweeps of the crude   gr id   to  
provide a s t a r t i ng   so lu t ion   fo r   t he   f i ne -g r id   sys t ems .  The second  phase of the  solu-  
t ion   involves  a sweep of the wing f ine-gr id ,   the  body f ine -g r id ,  and the  crude-grid 
system  with  appropriate  updating of overlapping areas. Approximately 80 second-phase 
i t e r a t i o n s  are usua l ly   requi red .   S ince  none  of the  gr id   systems are body o r  wing 
f i t t e d ,  boundary  conditions are appl ied  a t  mesh po in t s   nea res t   t he   ac tua l   su r f aces .  
Correc t ions  are app l i ed  a t  these  points   for   wing-surface slope and  body  displacement 
as w e l l  as fo r   l oca l   f l ow  inc l ina t ion .  

The vers ion  of WIBCO used  herein is  the  basic wing-body  code. Fu r the r   capab i l i -  
ties have  been  added ( r e f .  21 1, including  the  f ine-gr id   system  appl ied  to   pylons,  
n a c e l l e s ,  and wingle ts ,  as well as a scheme f o r   m o d e l l i n g   i n l e t   s p i l l a g e  and exhaust 
i n t e r f e r e n c e   e f f e c t s .  

EXPERIMENTAL DATA 

One of the  problems i n   o b t a i n i n g  good i n l e t   f l o w - f i e l d   d a t a   f o r  realist ic air- 
c ra f t   fo rebod ies  is t h e   s h e e r   s i z e  of the  models  necessary to  p rov ide   su f f i c i en t  
geomet r i c   de t a i l .  The problem is made  much worse i f   f l o w - f i e l d   s t u d i e s  are extended 
to   h igh   angles  of a t t a c k  and s i d e s l i p .  A t  least  one  imaginative method has  been 
t e s t e d   ( r e f .  22) t o   p rov ide  realist ic inc l ined   f l ow  to   an   i n l e t   wh i l e   e l imina t ing   t he  
need f o r  a massive  forebody model i n   t h e  wind tunnel.  On the  other   hand,  a g r e a t  
amount of da t a  on l a rge  models w a s  o b t a i n e d   i n   t h e   e a r l y  1 9 7 0 ' s  i n   P r o j e c t   T a i l o r -  
Mate, a s tudy  of var ious   a i rc raf t   forebody  shapes  and t h e i r   e f f e c t s  on engine- in le t  
flows. The f i r s t   p a r t  of t he   p ro j ec t ,  which w a s  spec i f ica l ly   concerned   wi th  
forebody-alone  f low  fields,   provided  the  data  used  for  comparisons  herein.   These 
forebody tests were performed  without   engine- inlet   s imulators  on wing-body  combina- 
t i o n s   r e p r e s e n t a t i v e  of three  types of f i g h t e r   a i r c r a f t   i n l e t   c o n f i g u r a t i o n s :   s i d e -  
mounted,  wing-shielded,  and  body-shielded. 

The f i r s t  two of these conf igura t ions  are cons ide red   i n   t h i s  paper, and ske tches  
of t h e   f u l l   a i r c r a f t   c o n f i g u r a t i o n s  are shown i n  f i g u r e  5. I t  w a s  f e l t   t h e   t h i r d  
conf igura t ion  would not  be as cha l lenging  as the f i r s t  two. The supersonic  and 
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t r anson ic  wind tunnel  tests were performed i n  the 16s and 16T wind tunnels  a t  AEDC 
( r e f s .  23 to  25 1.  The a c t u a l  tests used i n   t h i s   r e p o r t  were run  without  engine 
nacel les .   Three  types of d a t a  were taken  during the forebody tests: cone-probe 
f low-f ie ld   da ta ,  body p res su re   da t a ,  and  boundary-layer  data. The p r e d i c t i o n s   i n  
t h i s   p a p e r  are concerned  only  with .the fo rebody   f low  f i e ld   nea r   t he   i n l e t .  Thus, 
comparisons are made w i t h  t h e   f i r s t   t y p e  of da t a  and are p resen ted   i n  a format   offer-  
i n g   d i r e c t  comparison with the data i n   r e f e r e n c e s  23 to  25. 

The tests were run a t  Mach numbers  of 0.9 t o  2.50 and a t  angles  of a t t a c k  of -So 
to  25O. Although the q u a l i t y  of the da ta  is cons idered   to  be very  good, post-test 
examination of the  cone-probe  data   ( ref .   26)   has   indicated  that  one  of the   f ive   cone  
probes w a s  f au l ty .  On examination of the o r i g i n a l   t a b u l a t e d   d a t a ,  it was dec ided   t o  
omit   data  from th is   p robe .   Surber  and  Sedlock  (ref.  26) estimate the   da ta  from the  
o ther   p robes   to  be a c c u r a t e   t o  k l  O .  One o the r  problem w a s  the lack  of   detai led draw- 
ings  of t h e   a i r c r a f t   c o n f i g u r a t i o n s .  A s  a resu l t ,   the   numer ica l  models genera ted   for  
t h i s   s t u d y  were based on r a t h e r  small scale cross sec t ions   p re sen ted   i n   r e f e rences  23 
t o  25. However, the   inaccurac ies   thus   in t roduced   appear   to  be no grea te r   than   those  
introduced by the  approximations made i n   d e f i n i n g   t h e   a i r c r a f t  geometry a n a l y t i c a l l y ,  
as required by the STEIN and WIBCO codes. 

RESULTS AND DISCUSSION 

A p a r t i a l  summary of t h e   r e s u l t s   h e r e i n  i s  p resen ted   i n   r e f e rence  27. The 
r e s u l t s  of th i s   paper  are summarized i n   t a b l e  1 .  

Side-Mounted In l e t   Conf igu ra t ion  

The fuselage  geometry  generated  with  the STEIN code fo r   t he  side-mounted i n l e t  
conf igu ra t ion   ( f ig .   5 )  is shown i n   f i g u r e  6. The dens i ty  of t he   c i r cumfe ren t i a l   g r id  
w a s  increased  about  halfway down the   fuse lage ,  as w a s  t he   dens i ty  of t h e   r a d i a l   g r i d  
( n o t  shown i n   t h e   f i g u r e  ) , i n   o r d e r   t o   p r o v i d e  a more d e t a i l e d  mesh in   t he   r eg ion  of 
t h e   i n l e t .  The WIBCO model,  being  specified by the same QUICK-geometry as the STEIN 
model, w a s  very similar t o   t h e  model i n   f i gu re   6 ,   w i th   t he   dens i ty  of p o i n t s   i n   t h e  
body-fine  grid  system  tending to  be higher  than  those of the STEIN model over  the 
e n t i r e  body. 

Representa t ive  cases f o r  the STEIN code were chosen t o  be those a t  &, = 2.5. 
Solu t ions  were success fu l  a t  this Mach number fo r   ang le s  of a t t a c k  up t o  15O, as 
shown i n   f i g u r e s  7 t o  10. These f i g u r e s  show comparisons  of  predicted and exper i -  
mental   contours of local angle  of a t t ack ,   l oca l   ang le  of s i d e s l i p ,  and l o c a l  Mach 
number. Beyond a = 15O, t h e   i n c l i n a t i o n  a t  the  nose of t h e   a i r c r a f t  w a s  too  high 
f o r   t h e   c o n i c a l   f l o w   s t a r t i n g   s o l u t i o n  to be success fu l ,   i nd ica t ing  that  the a c t u a l  
flow  contained a detached bow shock. It is conce ivable   tha t  a b lun t -nose   s t a r t i ng  
s o l u t i o n  would be capable  of  overcoming this d i f f i c u l t y ,   b u t  that approach w a s  not  
a t t e m p t e d   i n   t h i s   s t u d y .  

Examination of f i g u r e s  7 t o  10 shows tha t   bo th   t he   p red ic t ions  and the experi-  
mental   data  behaved  Consistently as the  angle  of a t t a c k  w a s  increased   f run  Oo t o  
1 So. The agreement of the p red ic t ion  and the  experimental   data  of the f low  inc l ina-  
t i o n s  is good,  whereas the  agreement  between Mach numbers is consis tent ly   poor .  The 
t h e o r e t i c a l   l o c a l   a n g l e  of a t t a c k  is c o n s i s t e n t l y  l o  high, and the t h e o r e t i c a l  local 
angle  of s i d e s l i p  is c o n s i s t e n t l y  1 O low ( inboard) ,   perhaps   re f lec t ing   the   es t imated  
fl O probe  accuracy  s ta ted  previously.  
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When the  Mach number w a s  lowered, the STEIN code w a s  capable of  producing a 
good f l o w  s o l u t i o n  a t  M, = 2.2 and a = Oo and ( f i g .  111 ,  which  compared as 
favorably  with  experimental   data  as the  = 2.5 s o l u t i o n   ( f i g .  7). N o  s o l u t i o n  
a t  = 1.6,  even a t  a = Oo, was possible, however, as the   conf igu ra t ions  and 
f l igh t   condi t ions   once   aga in   p roduced  a detached b o w  shock. 

S imi l a r  good results were obtained w i t h  the WIBCO code i n   t h e   t r a n s o n i c  case, 
shown i n   f i g u r e s  12 to 17. In   gene ra l ,   l oca l   ang le s   o f   a t t ack  and s ides l ip   ag reed  
to  wi th in  a couple of degrees,   with  discrepancies  growing as the   ang le  of a t t a c k  
inc reased   t o  a = 25O. A t  this h ighes t   ang le   o f   a t t ack  (see f i g .  1 7 ( b )  ) , the  6, 
contours  show that  i n  the experiment  the  flow showed a much s t ronger   ou t f low on the 
lower (windward)  side  of  the body  and a much weaker  inflow on the  upper  ( leeward) 
s i d e  of the body than   the   p red ic t ion ,  which  can be taken as an   i nd ica t ion  of  viscous 
e f f e c t s  and possible   f low  separat ion.   This   can be seen   i n   t he  Mach number contours 
a l s o  (see f i g .  17 (c  ) 1, i n  which the  experimental  flows d i d   n o t  accelerate around the 
upper  shoulder  of  the model as the i n v i s c i d   p r e d i c t i o n  of t h e  WIBCO code  shows. 

The WIBCO code w a s  able t o  p roduce   so lu t ions   fo r   t h i s   con f igu ra t ion  a t  low 
supersonic  Mach numbers  of  1.2, 1.4, and  1.6,  and f i g u r e  1 8  shows t h e   r e s u l t s  a t  
& = 1.6. Local  f low  angles show good agreement. A WIBCO s o l u t i o n  a t  = 2.2 
( f i g .  191, well above  what is usual ly   considered  t ransonic   f low,  shows very good 
agreement  with  the  experimental  data  and  the STEIN r e s u l t s   ( f i g .  11 ). 

Wing-Shielded In le t   Conf igura t ion  

Figure 20 shows the  geometric model f o r   t h e  STEIN code for   the  wing-shielded 
i n l e t   c o n f i g u r a t i o n .  A s  before ,   the   coord ina te  mesh d e n s i t y  w a s  increased  about  
halfway down the  model. The geometr ic   descr ip t ion  shown is one composed e n t i r e l y  of 
c ros s - sec t ion   desc r ip t ions  up to the area of i n t e r e s t .  For   the  t ransonic  cases, how- 
e v e r ,   t h e   o v e r a l l   s e n s i t i v i t y  of the   f low  to  a much longer   por t ion  of t h e   a i r c r a f t  
geometry  dictated a d i f fe ren t   geometr ic   descr ip t ion .  The a i r c r a f t  model used  for   the 
WIBCO code w a s  much longer,  and  the  wing is d e s c r i b e d   i n  its e n t i r e t y  as a spanwise 
sequence  of cross sec t ions .  Attempts made t o  model the  geometry  in  the same manner 
as for   the   supersonic  case proved  to be unsa t i s f ac to ry .  

The s u p e r s o n i c   r e s u l t s  of the  STEIN code were obta inable   on ly  a t  a = O o  and 5 O  
a t  & = 2.5 because of large  subsonic  areas near the wing-fuselage  juncture.  The 
r e s u l t s  are shown as f i g u r e s  21 and 22. 

Sh ie ld ing   t he   i n l e t   unde r  the wing provides a s u b s t a n t i a l   l e s s e n i n g  of the  
e f f e c t s  of t he   l oca l   ang le  of a t t a c k ,  as can be seen  from  comparing  figures 8( a )  
and 2 2 (  a ) .  Although  quantitative  agreement of t he   i nc l ina t ions   does   no t  seem t o  be 
very  good, i t  is s i g n i f i c a n t  to no te   t ha t   angu la r   va r i a t ions  are small, and  minute 
changes  in  local  f low  angles  can cause substant ia l   changes  in   contour   placement .  
Wind tunnel   data   obtained a t  a fuse l age   s t a t ion   s l i gh t ly   ups t r eam of t h e   s t a t i o n  
shown i n   f i g u r e  21 ( a )  agree much better  with  the  predicted  contours  even  though the 
magnitudes of the  angles   involved are e s s e n t i a l l y   t h e  same. A t  angles  of a t t a c k  of 
l o o  and  above  the STEIN code   encountered   d i f f icu l t ies .  The problems  occurred a t  the 
sharp  leading  edge of t he  wing,  where a local  two-dimensional  f low  solution is used 
for   the  shock wave.  The f l i g h t   c o n d i t i o n s  and the geometry  of  the  wing  called  for a 
detached  shock, a s i t u a t i o n   t h a t  was unat ta inable   with  the  present   a lgori thm. Modi- 
f i c a t i o n s   t o   t h e   p r e v i o u s l y   d e s c r i b e d   s h o c k - f i t t i n g  scheme could  possibly remedy t h i s  
s i t u a t i o n ,  as could   the   redef in i t ion   o f   the   l ead ing   edge  of the  wing as b lunt .  The 
r e s u l t s  a t  a = 5O are reasonable ,   wi th   discrepancies   near  the body a t t r i b u t a b l e  
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once  again to  inaccuracies   in   the  geometr ic   descr ipt ion  and  lack of viscous  capabi l -  
i t y   i n   t h e   p r e d i c t i o n  code. No s o l u t i o n s  were poss ib l e   fo r   t h i s   con f igu ra t ion   fo r  
Mach numbers  of 2.2 o r  below. 

The WIBCO code,  run  for cases,at b&, = 0.9, w a s  more success fu l   a t   t he   h ighe r  
angles  of a t tack .   Resul t s   p resented   in   f igures  23 t o  26, for   angles  of a t t a c k  from 
Oo t o  Iso, show the  f low  pat terns   developing  consis tent ly .   Qual i ta t ive  agreement  
wi th   the   da ta  is reasonable ,   wi th   f low  inc l ina t ion   e r rors  on the   o rder  of 3O maximum 
a t  the  highest   angle   of   a t tack.  A s  in   p rev ious  cases shown for   bo th   conf igura t ions ,  
both  geometric  modelling  and  viscous  effects are respons ib le   for   d i screpancies   in   the  
resu l t s .   There  is evidence of a large  boundary  layer moving  from the  fuselage to  the  
lower sur face  of the  wing,   especial ly  a t  the  higher   angles  of a t t ack .  

Resul t s  of t he  WIBCO code a t  a = Oo fo r   t h ree   h ighe r  Mach numbers (up t o  
& = 1.6) are shown i n   f i g u r e s  27 to  29. These  f igures  and f igu re  23 show agreement 
of the  local-f low-incl inat ion  contours   for   both  the  predict ions and the  experimental  
da ta .  

CONCLUDING REMARKS 

In  general  it may be s a i d   t h a t   t h e  two inviscid  numerical  methods inves t iga t ed  
i n   t h i s   p a p e r  were capable of predict ing  forebody  f lows  to   levels   consis tent   with  the 
prel iminary  design of engine-inlet   locations.   Comparisons of contours of l o c a l  
angles  of a t t ack ,   l oca l   ang le s  of s i d e s l i p ,  and l o c a l  Mach numbers  were  compared with 
wind t u n n e l  da ta .  The supersonic  code, STEIN, showed  a  marked s e n s i t i v i t y   t o   a n y  
development of subsonic   reg ions ,   espec ia l ly  a t  low supersonic  Mach numbers or a t  
angles  of a t t ack   g rea t e r   t han  5O. The transonic  code, WIBCO, was  more robust  and w a s  
ab le   to   ca lcu la te   reasonable   so lu t ions   th rough  the  Mach number range of 0.9 t o  1.6 a t  
angles  of a t t a c k  of 1 So and  over,  depending on conf igura t ions .  Both  codes  require a 
f a i r ly   e l abora t e   geomet r i c   i npu t ,  which may become time  consuming. 

For a i r c r a f t   i n l e t   c o n f i g u r a t i o n s  more exot ic   than  those  considered,   the  two 
codes may n o t   p e r f o r m   s a t i s f a c t o r i l y ,   p a r t i c u l a r l y   a t   h i g h   a n g l e s  of a t t ack   o r   s ide -  
s l i p .  Under such f l ight   condi t ions,   boundary  layer   bui ld-up  cannot  be neglected  even 
when the  f low  remains  a t tached.   This   s i tuat ion  suggests   that   the   next   s tep i n  the 
ana lys i s  of such  configurat ions  should  include  viscous  effects ,   including  vortex 
shedding. 

Langley  Research  Center 
National  Aeronautics and  Space  Administration 
Hampton, VA 23665 
January 2, 1984 
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TABLE 1 .- SUMMARY OF SOLUTIONS 

C o n f i g u r a t i o n  Mach numbel 

Side-mounted L 
2.2 

ding-shielded I 2.5 

C o d e  used and f igure  containing contours for 
angles  of attack, deg, of - 

0 5 

STEIN,  STEIN,  
f i g .  7 f i g .  8 

STEIN,  
f ig .  11; 

WIBCO, 
f ig .  1 9  

W I  BCO , 
f ig .  18 

WIBCO,  WIBCO, 
f ig.  1 2  f i g .  13 

STEIN,   STEIN,  
f i g .  21 f ig.  22 

W I  BCO , 
f i g .  29 

W I  BCO , 
f ig .  2 8  

iU BCO , 
fig. 27 

PIIBCO, WIBCO, 
f i g .  23 f i g .  24 

10 

S T E I N ,  
f ig .  9 

WIBCO, 
f i g .  14 

MIBCO, 
€ig. 25 

1 5  

STEIN , 
f ig .  1 (  

l IBCO,  
€ig. 1 5  

IIBCO, 
lig. 2 6  ~ _ "  

20 25 

l IBCO,  WIBCO, 
€ig. 16 f ig .  1 '  

1 2  



--------- Original  data  points  connected  by  straight  lines 
Analytic  curves  defined  between  control  points 

cross section Body  line 

( a )  Cross sec t ion  and body l i n e .  

( b )  Complete cross-sect ion model. 

Figure 1 . -  Typical QUICK-geometry body d e f i n i t i o n .  
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(a) Bow shock. 

(b) Canopy and  wing  shocks. 

Figure 2 .- STEIN grid-shock  development. 
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Wing shock 

Figure 3.- STEIN cross-sec t iona l   g r id   pa t te rn .  

shock 
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Body 

Global crude g r i d  

Wing f i n e   g r i d  

Figure 4 . -  WIBCO crude and f i n e   g r i d s .  (From ref. 19.)  
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Side-mounted  inlet 

J 

Wing-shielded  inlet 

Figure  5.- Project   Tai lor-Mate  configurat ions.  
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Figure 6 .- QUICK-geometry 

Axial loca t ion  of inlet plane / 

model of Tailor-Mate  side-mounted in let   conf igurat ion for use with STEIN code. 



P r e d i c t i o n  
""""" Experiment 

P r e d i c t i o n  

Experiment """"" 

Figure 7.- Contours  predicted from STEIN 
code and Tailor-Mate experimental  data 
for side-mounted configuration a t  
M, = 2.5  and a = O O .  
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/ 2 - 6 0  

- Predict ion 
Experiment """"" 

- 
8 

d 
b. 

- 2 . 5 0  

( c )  M I -  

Figure 7 .- Concluded. 
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P r e d i c t i o n  
Experiment """"" 

P r e d i c t i o n  

Experiment " " _ " " _  

Figure 8.- Contours predicted from STEIN 
code and Tailor-Mate experimental data 
for side-mounted configuration a t  
M, = 2 .5  and a = 5 O .  
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Predict ion 
Experiment - " " " " -  

t 

( C )  MI. 

Figure 8 .- Concluded. 
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Prediction 
""""" Experiment 

Prediction 
Experiment """"" 

""" """""" 

4 

1 

(b) 8 , .  

Figure 9.- Contours predicted from STEIN 
code and Tailor-Mate experimental data 
for side-mounted configuration at 
M, = 2.5 and a = loo. 

I 
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Predict ion 
Experiment """"" 
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CI 

v 

2 .40  

Figure 9 .- Concluded. 
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P r e d i c t i o n  
""""" Experiment 

P r e d i c t i o n  
""""" Experiment 

(b) 6,-  

Figure 10.- Contours predicted from STEIN 
code and Tailor-Mate experimental  data 
€or side-mounted configuration a t  
M,,, = 2.5  and a = l S O .  
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P r e d i c t i o n  
Experiment """"" 

- "_ 

( C )  M I *  

Figure 1 0 .- Concluded. 



P r e d i c t i o n  
""""" Experiment 

P r e d i c t i o n  
""""" Experiment 

Figure 1 1 . -  Contours predicted from STEIN 
code and Tailor-Mate experimental  data 
for side-mounted configuration a t  
M, = 2.2 and a = Oo. 
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Predict ion 
Experiment """"" 

i 

( c )  M I *  

Figure 1 1 . -  Concluded. 
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Prediction 
""""" Experiment 

I 

Prediction 
Experiment - -~ 

""""" 

I 
- 

Figure 12.-  Contours  predicted from WIBCO 
code and TailorAMate experimental  data 
for side-mounted configuration a t  
M, = 0.9 and a = O O .  
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Predict ion 
""""" Experiment 

4 

( c )  M I *  

Figure 1 2 .- Concluded. 
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P r e d i c t i o n  
""""" Experiment 

P r e d i c t i o n  
Experiment """"" 

Figure 13 . -  Contours predicted from WIBCO 
code and Tailor-Mate experimental  data 
for side-mounted configuration a t  
M, = 0.9 and a = 5 O .  
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I 
I 

( c )  MI. 

Figure 1 3 .- Concluded. 
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P r e d i c t i o n  
""""" Experiment 

I 1 

P r e d i c t i o n  
""""" Experiment 

I 

Figure 14.- Contours predicted from WIBCO 
code and Tailor-Mate experimental data 
for side-mounted configuration a t  
M, = 0.9 and a = IOo. 
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.e c"" - -\ 

- 9 0  
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\ 
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\ 
I 
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I 
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i I 
I 

( C )  M I -  

Figure 14.- Concluded. 
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P r e d i c t i o n  
Experiment """"" 

I 
( a )  a,. 

P r e d i c t i o n  

Experiment 

I - - -  

""""" 

Figure 15.-  Contours predicted from WIBCO 
code and Tailor-Mate  experimental  data 
for side-mounted configuration a t  
M, = 0.9 and a = 1 5 O .  
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Predict ion 
""""" Experiment 

" . ." 

( c )  MI. 

Figure 15.-  Concluded. 

36 



P r e d i c t i o n  
""""" Experiment 

I 

\ 

Prediction 
Experiment """"" 

I 

Figure 16.- Contours  predicted  from WIBCO 
code  and Tailor-Mate exper imenta l   da ta  
f o r  side-mounted  configuration a t  
M, = 0.9 and a = 20°. 
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Predict ion 
""""" Experiment 

1 - - - - - - . 

Predict ion 
""""" Experiment 

- - - - - - . 

( c )  M I *  

Figure 16.- Concluded. 



P r e d i c t i o n  
""""" Experiment 

P r e d i c t i o n  
Experiment """"" 

Figure 17.-  Contours  predicted from WIBCO 
code and Tailor-Mate experimental  data 
for side-mounted  configuration at 
M, = 0.9 and a = 25O. 
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Predict ion 
Experiment """"" 

L I I I I I I I 

( c )  M I -  

Figure 17.-  Concluded. 
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P r e d i c t i o n  
" " - " " -  Experiment 

I 

i 

P r e d i c t i o n  
Experiment """"" 

Figure 18.- Contours predicted from WIBCO 
code and Tailor-Mate  experimental  data 
for side-mounted configuration a t  
M, = 1 .6 and a = Oo. 
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Predict ion 
""""" Experiment 

( c )  M I -  

Figure 18 .- concluded. 
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P r e d i c t i o n  
Experiment """"" 

I 

\ 

P r e d i c t i o n  
""""" Experiment 

I 

Figure 19.- Contours predicted from WIBCO 
code and Tailor-Mate  experimental  data 
for side-mounted configuration a t  

= 2.2 and a = Oo. 

43 



Predict ion 
Experiment """"" 
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( C )  M,. 

Figure 19.- Concluded. 
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Predict ion 
""""" Experiment 

Predict ion 
Experiment """"" 

- 

(b) B,. 

Figure 21 .- Contours predicted from STEIN 
code and Tailor-Mate experimental data 
for wing-shielded configuration a t  
M, = 2.5  and a = O O .  
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Predict ion 
Experiment """"" 

( C )  M I -  

Figure 21 .- Concluded. 
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Prediction 
Experiment """"" 

Prediction 
Experiment """"" 

(b) 6 , .  

Figure 22.- Contours predicted from STEIN 
code and Tailor-Mate  experimental  data 
for wing-shielded  configuration a t  

= 2.5 and a = So. 
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Predict ion 
""""" Experiment 

~- 

(c) M I -  

Figure 22.- Concluded. 
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P r e d i c t i o n  
Experiment """"" 

P r e d i c t i o n  
Experiment """"" 

(b) 6,. 

Figure 23.-  Contours predicted from WIBCO 
code and Tailor-Mate experimental  data 
for wing-shielded  configuration a t  
M, = 0.9 and a = O O .  
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Pred ic t ion  
""""" Experiment 

( c )  M,; a l l  pred ic ted   da ta  were between MI = 0.90 and 0.92. 

Figure 23.- Concluded. 
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Predict ion 
""""" Experiment 

Predict ion 
Experiment """"" 

(b) 8 , .  

Figure 24 .- Contours predicted from WIBCO 
code and Tailor-Mate  experimental  data 
for wing-shielded  configuration  at 
M, = 0.9 and a = So. 
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Predict ion 
""""" Experiment 

( C )  M, 

Figure 24.- Concluded. 

53 



Predict ion 
Experiment """"" 

Predict ion 
Experiment """"" 

I 

(b) 8 , .  

Figure 25.-  Contours predicted from WIBCO 
code and Tailor-Mate  experimental  data 
€or wing-shielded  configuration a t  
M, = 0.9 and a = loo. 
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Predict ion 
Experiment """"" 

3 

( c )  MI. 

Figure 25 .- Concluded. 
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Prediction 
Experiment ””“““ 

40/ 8O / 

( a )  al. 

(b) 6 , .  

Figure 26.- Contours  predicted from WIBCO 
code  and  Tailor-Mate  experimental data 
for   wing-shielded  configurat ion a t  
M, = 0.9 and a = 15O. 
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Predict ion 
""""" Experiment 
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- 8 2  

.~ 

( C )  M I -  

Figure 26 .- Concluded. 
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P r e d i c t i o n  
""""" Experiment 

P r e d i c t i o n  
Experiment """"" 

(b) 8 , .  

Figure 27.-  Contours predicted from WIBCO 
code and Tailor-Mate experimental  data 
for wing-shielded  configuration a t  
M, = 1.2  and ct = Oo. 
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P r e d i c t i o n  
""""" Experiment 

1 . 2 0  
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Predict ion 
Experiment """"" 

Predict ion 
Experiment """"" 

(b) 6,. 

Figure 28.- Contours predicted from WIBCO 
code and Tailor-Mate  experimental  data 
for wing-shielded  configuration a t  
M, = 1.4 and u = O O .  
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""""" Experiment 

1 . 5 0  

( C )  M I *  

Figure 28 .- Concluded. 

61 



Pred ic t ion  
Experiment """"" 

Pred ic t ion  
Experiment """"" 
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(b) 6 , .  

Figure 29 .- Contours predicted from WIBCO 
code and Tailor-Mate experimental  data 
for wing-shielded  configuration a t  
M, = 1.65  and a = O o .  
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Figure 29.- Concluded. 
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